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The development of turbulent boundary layers with 
negligible wall stress 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 25 September 1959) 

In  a recent paper, Stratford has described a turbulent boundary layer with 
continuously zero wall stress and has developed a theory to describe the flow 
based on two assumptions. The first is that the flow in the outer part of the layer 
is affected only by the original Reynolds stresses during the initial development, 
and the second is that flow in the equilibrium layer close to the wall is determined 
by the pressure gradient and is independent of upstream conditions. In  this 
paper the same assumptions are used, but more careful consideration of their 
limitations has led to the elimination of some inconsistencies in the original work 
and to a theory that gives a better description of some of the experimental results. 
The principal results are: (i) a criterion for zero wall stress in an adverse pressure 
gradient of sufficient strength, (ii) the form of the pressure distribution for a self- 
preserving flow with zero stress, (iii) the mean velocity distribution in this flow, 
(iv) an estimate of the constant in the ‘square-root ’ velocity distribution for flow 
near a wall with zero stress. 

1. Introduction 
The prediction of the course of development of a turbulent boundary layer in 

an arbitrary adverse pressure gradient is a problem of considerable practical 
importance in engineering, and a number of methods have been developed, some 
of which lead to reasonably accurate results. The more recent and successful 
methods take notice of the existence of a ‘ constant-stress ’ layer near the surface 
and approximate to the velocity profile by a combination of a logarithmic wall 
profile and an outer profile, but the combining of the two parts has been an 
arbitrary procedure justified only by results. Stratford (19594, in a very inter- 
esting paper, points out that, in a boundary layer subjected to a severe pressure 
gradient over a short distance, the outer profile is determined by the initial 
profile and the pressure rise, and he goes on to develop a very simple criterion for 
zero stress by combining this observation with a deduction of the wall profile for 
zero stress. The significance of this work is not that it provides a more accurate 
prediction of pressure rise to separation than other methods (in fact, it is less 
accurate), but that it is founded on a physically acceptable model of the boundary- 
layer motion and that results derived from the model should have very wide 
validity if the nature of the underlying approximations is kept in mind. Although 
this work marks a step forward in the replacement of assumptions made for 
mathematical convenience by assumptions conforming to physical reality, the 
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assumptions that the initial profile has a power-law form, that the junction of the 
wall profile and the outer profile is necessarily smooth, and that the wall profile 
can extend to the outer edge of the layer, fall short in this respect and cause some 
inconsistency between the theory and the experimental results. This paper 
presents an alternative version of the theory that leads to a more consistent and 
complete description of the turbulent boundary layer with zero wall stress 
(Stratford 1959 b)  and that is consistent with present knowledge of self-preserving 
boundary layers. It is. in fact. a commentary on the original work of Stratford. 

2. Notation 
Turbulent boundary layers on a flat, smooth surface are considered using 

Cartesian co-ordinates to describe the flow. The axes are chosen so that Ox is in the 
surface and in the direction of mean flow (assumed two-dimensional) and Oy is at 
right angles to the surface. Then 

u, v, 0 
u, v, w 
P 
70 

u, is the free-stream velocity 

are the components of mean velocity 
are the components of the velocity fluctuation 
is the pressure at the wall y = 0 
is the shear stress at the wall 

- -  - - U,E1 is the longitudinal pressure gradient aP 
ax ax 
UO is the free-stream velocity at x = xo, the beginning of the adverse 

cf = ~ T ~ / V :  is the local friction coefficient, immediately upstream of zo 
cp  = 1 - UqlU,Z is the pressure recovery coefficient 
y = 7$/(KUO) is the local friction parameter 
K is the K&rm&n constant 
KO is the constant in the velocity profile for zero stress 

= [ 7 0 ( X ) / 7 0 ( X o ) l a  

S = w;* exp (y-l - A )  is the boundary-layer thickness at xo 
7 = Y P  
VT 

pressure gradient 

is a non-dimensional co-ordinate 
is the effective eddy viscosity for the outer part of a self- 

preserving boundary layer 

R, = - (Ul- U ) d y  is a flow constant, equivalent to a Reynolds number 

based on the eddy viscosity 

Validity of the boundary-layer approximation is assumed. 

3. The two-layer model 
It is well known that the turbulent flow very close to a solid boundary is very 

different in nature from the flow near the outer edge of a boundary layer, and that 
one reason for the difference is that the wall flow has a high rate of energy 
dissipation and so is nearly in a state of equilibrium determined by local condi- 
tions while the outer flow has a low rate of dissipation and its structure is de- 
pendent on conditions far upstream of the point of observation. In  general, the 
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parts of the flow which have these properties in the purest forms can develop 
almost independently (e.g. entering upon a region of strong pressure gradient, 
modification of the wall flow is nearly instantaneous while the outer flow is 
modified at a much more gradual rate), and the first useful approximation for the 
description of a turbulent boundary layer is to represent it as the juxtaposition 
of an inner wall flow and an outer edge flow, neglecting the blending region within 
which the dissipation is neither large nor small. In  the real flow, interaction 
between the two parts of the flow takes place in the neglected blending region, 
and this can be described in the model by imposing suitable conditions at  the 
junction. If the layer is self-preserving, this distinction between the layers is 
expressed by assuming the velocity distribution in the outer layer to be that 
arising from constant eddy viscosity in the outer flow and a logarithmic distribu- 
tion of velocity in the inner layer (Townsend 1956a; Clauser 1956), and this leads 
to satisfactory results if the junction is assumed smooth. If the layer is not self- 
preserving, the assumption of constant eddy viscosity must fail (in the outer 
layer, ‘turbulent fluid ’ behaves like a visco-elastic fluid with a comparatively 
long relaxation time), and the junction conditions require special consideration. 

Consider the changes in a turbulent boundary layer as it flows into a region of 
severe adverse pressure gradient after a period of development in favourable or 
zero gradient, and choose the origin so that xo, the start of the pressure gradient, 
is equal to the distance from the leading edge at which a boundary layer de- 
veloping in zero gradient would have the same friction coeacient. Initially, the 
stress gradients are of order r0/6, and the criterion of severity is that accelerations 
due to t.he pressure gradient should be large compared with To/&, i.e. 

and, since 8/xo is of the order of c$, this requirement is satisfied if 

In  a flow satisfying (3.2), the total head is very nearly constant along streamlines 
except in regions where stress gradients have increased very considerably. This 
will happen first very near the wall, where the rate of dissipation of turbulent 
energy is so large that any reduction of the energy supply by retardation of the 
mean flow leads almost instantaneously to lower levels of turbulent intensity and 
to lower Reynolds stresses. Further from the wall, the rate of dissipation is less, 
and an appreciable change in Reynolds stress will take longer and the stress 
gradient will not become comparable with the pressure gradient so close to the 
start of the expansion. Sufficiently far downstream, supposing the layer to be 
still attached, the Reynolds stresses will be modified on all streamlines and will 
be determined more by the pressure distribution than by the initial values. These 
effects are illustrated in figure 1, which shows the variations of Reynolds stress 
with stream function a t  various distances from the beginning of the adverse 
gradient. 
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It is useful to distinguish three stages of development. In  the initial stage, 
Reynolds stresses have been modified only in a thin layer close to the wall and 
this layer forms an equilibrium layer within which the flow is substantially 
determined by the local wall stress and pressure gradient. The remainder of the 
flow has been acted on only by the pressure field and, to a small extent, by the 
initial Reynolds stresses. Further retardation causes the region of modified 
Reynolds stress to form an appreciable part of the whole flow, and then only a part 
of the modified region is in a state of wall equilibrium and has a structure inde- 
pendent of upstream conditions. In  the last stage of development, Reynolds 
stresses over the whole layer have been affected by the retardation, and it may 
happen that flow becomes sew-preserving and independent of the initial flow. If  
this occurs, past experience suggests that Reynolds stress and mean velocity 

Stream function 

FIGURE 1. Distributions of shear stress in a boundary layer entering a region of strong 
adverse pressure gradient. (1) Initial distribution at z = z,,. (2) and (3) Initial stage of 
development. (4) and (5) Intermediate stage: modified stresses no longer conked to 
equilibrium layer. (6) Final stage : stresses modifled everywhere. 

gradient will be related through a coefficient of eddy viscosity in the outer layer. 
It follows that there are means of inferring the distributions of mean velocity 
both in the inner and outer layers if the layer is either in the initial stage of 
development or in a stage of self-preserving development, and a complete descrip- 
tion is possible if the position and nature of the junction can be determined. 

Two necessary conditions that must be satisfied at the junction are continuity 
of mean velocity and of Reynolds stress, as is easily seen by remembering that the 
neglected blending region has properties intermediate between those of the inner 
and outer layers. If mean velocity were discontinuous in the model, the mean 
velocity gradient in the blending region would be abnormally large, which would 
lead to abnormally high (or low) rates of production of turbulent energy and to 
abnormal Reynolds stresses. It follows that the inner and outer velocity distribu- 
tions, whenproduced, intersect in the blending layer. Similarly, a discontinuity of 
Reynolds stress would lead to abnormal acceleration of the mean flow and the 
distributions of Reynolds stress must also intersect in the blending region and be 
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continuous in the two-layer model. In  the initial stage of development, these two 
conditions are sufficient to determine the nature of the junction and any further 
condition is redundant, but a third condition must be imposed in the self- 
preserving stage of development. The reason for this is that stress gradients are 
then not negligible and, if the flow obeys the equation of mean motion, continuity 
of velocity implies continuity of stress. In  the initial stage, Reynolds stress 
gradients are negelected in the equation of mean motion and, to this approxi- 
mation, Reynolds stress and mean velocity are capable of independent variation. 
The third junction condition, applicable only to self-preserving flows, is usually 
taken to be continuity of mean velocity gradient, equivalent to continuity of 
effective eddy viscosity. 

4. Wall equilibrium for zero wall stress 
The concept of the equilibrium layer was first developed for the constant-stress 

layer, but it is capable of considerable extension to flow along any boundary on 
which the mean velocity is specified. Sufficiently close to any solid boundary, the 
oonvective terms in the averaged equations of motion are negligible compared 
with the stress terms, and the equations reduce to 

(4-1) 
auv ap a=u 
aY ax ay= 

+V- _ -  _ _  - 

- au ap 
or, in integrated form, r = - uv + v - = - y + 7 ay ax 0- 

So the distribution of shear stress depends only on the local parameters, 70 and 
aP/ax, and it may be inferred that the motion within a thin layer for which (4.2) 
is valid depends only on these parameters and on the fluid viscosity. The detailed 
justification of this assumption depends on the possibility of also neglecting con- 
vective terms in the equation for the turbulent kinetic energy, which implies that 
the turbulent motion is in a state of energy equilibrium. Within the fully turbulent 
part of such a layer, it is well known that 

u = -  $[ log iiy) -- + A  ] (4.3) 

if 7, % (aP/ax)  y ;  but Stratford (1959a) has shown that, if 7, -g (aP/ax)  y ,  

(4.4) 
and that, for zero wall stress 

2 (ap ( E)+ 
K ,  ax u=-  -y  +cv- (4.5) 

(Here KO is an absolute constant, expected to be similar in magnitude to the 
K&rm&n constant K.) The condition that convective terms in the equation of 
mean motion are negligible is that 

10-3 
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or, after substituting the equilibrium distribution, 

For the power-law variat%ion of free-stream velocity, Ul oc xu, this is 

5. Initial stage of development 
In  the initial stage of development in a strong adverse pressure gradient, the 

outer layer behaves nearly as an inviscid fluid and the inner layer is an equilibrium 
layer whose motion is determined by the local pressure gradient and the wall 
stress. The mean velocity distribution a t  the beginning of the adverse pressure 
gradient may be written in the form 

U = Ul(X0) [1 -rf (r)l3 
where y = T~(X~)/(KU~(X~)), 7 = y/S, S = (v/KUl(xo)}exp (7-I-A).  

Within the equilibrium (constant-stress) layer, 

f ( r )  = -1ogr. 

P(X0) + Qm? - rf(r)12 = P(x) + W Z ( X ,  9) 

In  the outer layer, total head remains constant along streamlines, and 

if (x", yS) and (x, y) are on the same streamline. Within the inner layer, 

if70 > (dP/dx) y, and" 

if 70 < (dP/dx) y. Consider now the streamline which at x divides the inner, 
equilibrium layer from the outer layer. Since the inner layer is an equilibrium 
layer, its distance from the wall must be small compared with the layer thickness 
at x and therefore also at xo. This dividing streamline lies in the constant-stress 
layer at xo, and so we may use equation ( 5 . 2 )  for the velocity distribution function 
f (7). 

The condition that (xo, yoS) and (x, yl) lie on the dividing streamline is 

ri,r"s( 1 - y + y log 7 0 )  = RU" y,( 1 - y + y log R - (5.6) 

or (5.7) 

* The additive term c(v dP/dx)* in equation (4.5) is of order U,( U,x/v)-f and is negligible 
at Reynolds numbers over 106. 
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The first joining condition is continuity of mean velocity, i.e. that the mean 
velocity given by (5.4) or by (5.5) satisfies equation (5.3): 

Po + +U;( 1 + y log T , ) ~  = P + +R2U; [ 1 + y log (.$)I2 (5 .8 )  

or 
2 dP 

K i  dx 
= P+--yy,. (5.9) 

The second joining condition is continuity of shear stress, and is, to a good 
approximation, that 

(5.10) 
dP 

K2y2U; = R 2 K 2 y 2 U f + Z y l .  

The two sets of equations (5.6), (5 .8 ) ,  (5.10) and (5.7)) (5.9), (5.10) describe 
respectively the initial development and the condition for attainment of zero wall 
stress. The second set may be solved explicitly, and this produces* 

8 K 3  x - - ---y2-O = @K3BOy2exp ( A  --?-I), (5.11) 
3Ko 6 

where R, = (U,x,/v). If the origin of x is so chosen that the boundary layer at  xo 
has the same local friction coefficient as a constant-pressure layer that has 
developed for a distance xo (Townsend 1 9 5 6 ~ ~ ) )  we have 

Bo = [Il - (HI + 1;) y + 2 ( 4  + 12) r2] K-3y-2 exp (7-l - A ) ,  (5.12) 

and then 

= + P ~ [ l 1 -  (21; + -4) + 2(11+ 1.) y2] = B. (5.13) 

This may be compared with Stratford’s result, based on use of a power law for the 
initial velocity profile and use of continuity of velocity gradient as the second 
joining conditiont 

(2c ) h - 2 )  xdc, ’ = l.OfjP-l(lO-~RO)&i, (5.14) 
P ( d x )  

where n = log,,R,. 
Stratford points out that a relation of this sort defines a pressure distribution 

in which a layer develops with continuously zero wall stress but without separa- 

* Equations (5.2) and (5.10) are good approximations only if log lo < -3, and the 
analysis is only valid if 

c ,  = ( 1  4- y log l 0 ) 2  - 2py2 < (1 - 3y)2 - 2&*. 

For a Reynolds number of los, y = 0.1 and the pressure recovery coefficient may not 
exceed 0.47. 

t Stratford also makes an allowance for the effect of Reynolds stresses on the outer flow 
by assuming them to be unaffected by the pressure gradient. This refinement has been 
omitted in the derivation of (5.13). 
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tion, and he has succeeded in producing such a zero-stress layer by slight modifica- 
tion of the pressure distribution defined by equation (5.14) (Stratford 19593). 
The theory of this paper gives the relation between pressure and distance as 

2--2 ] " I  XO 

exp ------I (c, + 2/32y2)& - 1 x ( [(-E--- c + 2/32y2)4 - 1.5 + 0.75 = 4~y-2-0, (5.15) 

[ Y  Y 

and in figure 2 this pressure distribution is compared with Stratford's theoretical 
distribution which is an adequate representation of the experimental distribution 
over the expected range of validity of the theory. It is clear that both theories 

0 

0 I I I 1 

0 0.1 02  03  04  
I I I 1 

0 0.1 02  03  04  

(a: - XO)/XO 

FIGURE 2. Comparison of predicted pressure distributions for development with con- 
tinuously zero wall stress. Full line, Stratford (KO = 0.27); ., logarithmic theory 
(KO = 0.55); 0 ,  logarithmic theory ( K O  = 0.60). R, = lo6, y = 0.10. 

1 

0 0.5 

c9 

FIGURE 3. Comparison of the theoretical criterion for zero wall stress with measurements 
by Schubauer & Klebanoff (1961). (0, Experimental; full line, theory. R, = 14-3 x 109, 
7 = 0.075, KO = 0.50.) 
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are capable of describing the measurements for cp < 0.40 if a free choice of the 
value of the constant KO is allowed. Stratford used K O  = 0.27 compared with the 
values of 0.50 and 0.55 used in figure 2. 

Equation (5.13) may be used to predict pressure-recovery coefficients at 
boundary-layer separation, i.e. zero wall stress, supposing the pressure distribu- 
tion to be known and the adverse gradient to be so large that the approximations 
of the theory are valid. Of the available published material, only the layer 
studied by Schubauer & Klebanoff (1951) has an acceptably rapid rise of pressure, 
and this is compared with the rapid expansion theory in figure 3 by plotting cp 
against xo(dcp/dx),  as given by equation (5.13) and as observed. Zero stress is 
predicted at cp = 0.42, compared with observed separation at  cp = 0.50, but the 
nature of the experimental pressure distribution is such that a comparatively 
small amount of interaction between the inner and outer layers would lead to a 
considerable delay in attaining zero wall stress. In  its present form it is unlikely 
that equation (5.13) would provide accurate predictions of separation in practical 
problems, but the author believes that the theoretical basis is sound and that it 
should give accurate estimates of effects due to change of Reynolds number or 
initial boundary-layer characteristics. 

6. The self-preserving flow with zero wall stress 
It has been pointed out that, after a sufficient period of development, the 

structure of the whole layer will be modified by the pressure gradient, and then 
a simple description is possible only if the flow is self-preserving. Clauser (1956) 
has given details of self-preserving flows in adverse pressure gradients with finite 
wall stress, but Stratford has suggested that the flow with continuously zero 
wall stress, defined by equations (5.13) or (5.14), becomes self-preserving with a 
distribution of mean velocity 

4Kg U: 
for y<- 

dP/dx 

and a distribution of free-stream velocity 

His experimental results suggest that this is a very rough description of the real 
behaviour, and a better one is easily obtained by using the theory of self-pre- 
serving boundary layers (Townsend 1956 b).  A turbulent flow is self-preserving if 
the distributions of mean velocity and of Reynolds stress may be expressed con- 
sistently in the forms 

where f and g are universal functions independent of x, and the scales uo and 1, are 
functions only of x. The consistency may be tested by substitution in the averaged 
equations of motion, which leads to 
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neglecting the viscous terms and terms involving normal Reynolds stresses. This 
is of self-preserving form if 

“ 0  = const., U O K u , ,  & 5 3 = const., 
U, dx 

and the scales may be defined as 

u, = u,, I ,  = x (6.5) 

by choosing a suitable origin for x. It has been shown (Townsend 1956a) that 
exactly self-preserving flow with finite wall stress is possible only if U, cc (2, - x)-1, 
but another type of self-preserving flow is possible if the wall stress is zero. The 
reason for this is that the velocity distribution in the equilibrium layer may be 

U written as 

which is a self-preserving form if U, cc (x - x,), and if the additive term is negligibly 
small. The exponent a is necessarily negative and depends on the shape of the 
velocity profile. A simple application of the equation for the momentum integral 
shows that 

where 

Experience with other self-preserving boundary layers has shown that an 
adequate approximation to the function f ( r )  is obtained by assuming a sharp 
distinction between an inner equilibrium layer and an outer layer within which 
the effective eddy viscosity, vT = -uV/(aU/ay),  is independent of distance from 
the wall. Clauser (1956) has shown that the value of the eddy viscosity is such 
that 

L J r n ( U l -  U ) d y  = R,, 
’T 0 

where R, is nearly independent of pressure gradient (see also, Townsend 1956b). 
Assuming this, the mean velocity in the outer layer (7 > 7,) is determined by the 
non-dimensional equation for f(7) 

2 
and, in the inner layer, by f ( 7 )  = 1 - - ( -all)&. (6.10) 

Equation (6.9) is a form of the Falkner-Skan equation, and solutions are required 
with the boundary conditions 

f(0) = A ,  f’(0) = 0, f”(0) = RS -uA(2-A) ,  

where I, and a depend on the form off(7). An approximate solution of (6.9) is 

KO 

(6.11) 
4l 

f ( 7 )  = A e-.tae9’, (6.12) 
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which satisfies the boundary conditions if 

(6.13) 

To make the problem determinate, the joining of the velocity distributions in 
the inner and outer layers must be specified by two independent conditions. 
Continuity of velocity requires that 

Ae-l s a 7 1  2 2 = 1--(-aay 1 )4, (6.14) 

but, since the stress must satisfy equation (6.4), continuity of stress is assured for 
any value of ql. In  self-preserving layers developing in no pressure gradient, the 
junction is very nearly smooth, and so there is some justification in requiring 
continuity of velocity gradient, i.e. that 

2 

h’0 

(6.15) 

If the values of I, and I, are approximated by assuming that the outer velocity 
distribution (6.12) extends all the way to q = 0, then 

(6.16) 

and equations (6.7), (6.13), (6.14), (6.15) can be solved to give valuesof A, a, aayl, 
aKt as functions of K0R$ These quantities are tabulated in table 1. 

R, R$ A -a “Vl uK: 
3.02 0.696 0.252 0.6 3-46 
3.70 0.756 0.241 0.5 4.32 
4-19 0.787 0.235 0.45 5.08 
4.32 0.795 0.234 0.44 5-26 
4.87 0.821 0.228 0.4 6.19 
7-16 0.886 0.214 0.3 11.02 

TABLE 1 

These predictions are compared with the experimental results of Stratford in 
figure 4, assuming a virtual origin for the self-preserving flow at x/xo = 0.94. It is 
evident that the velocity distributions for cp = 0.489, 0.624, 0.682 are nearly of 
the same shape and that the layer thickness is increasing nearly linearly with 
distance from the effective origin. The actual velocity distributions are repre- 
sented fairly well by the composite distribution for 

A = 0.795, - a  = 0.234, KO = 0.50, R, = 74.2, 

except near the edges of the flow. The assumption of constant eddy viscosity 
always leads to the prediction of a velocity distribution that approaches the free- 
stream velocity less rapidly than the real one, and the discrepancy near the edge 
of the flow is not unexpected. The value of the exponent a is less than the value 
suggested by Stratford ( - 0.25), but it is in good agreement with the observed 
distribution of free-stream velocity (figure 5). 
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Two universal constants of uncertain magnitude appear in these results. The 
first is the flow constant R, which describes the moving equilibrium attained in 
the outer flow. The application of the theory to the experimental results gives 
R, = 74 5 4, which is larger than the mean of the experimental values of Clauser. 
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FIGURE 4. Mean velocity distributions for self-preserving flow with zero wall stress. (Full 
line, composite distribution for KO = 0.50, R, = 74; experimental points from Stratford 
(1959b) with x/xl = 0-94.) 0, cg = 0.682; x , c, = 0.624; 0 ,  c,, = 0.489. 

-0.1 

- 0.3 I I I 
- 0.4 - 0.2 0 0.2 

b i o  [(x/xo) - 0.941 

FIGURE 5. Comparison of observed variation of free-stream velocity with power-law 
variation inferred from the mean velocity distribution. 
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It is, however, Close to the value deduced by a similar analysis of the constant- 
pressure boundary layer. The second constant is definitely rather larger than the 
Ktirmh constant, which is to be expected from a consideration of the effect of 
lateral transfer of turbulent energy on the level of turbulent intensity. The same 
value of K O  will describe both the initial development and the self-preserving 
stage of the zero-stress layer. The conclusion is that KO = 0.50 _+ 0.05. 
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